Submit Info #12983

Problem Lang User Status Time Memory
Dynamic Tree Subtree Add Subtree Sum cpp niuez AC 3695 ms 225.80 MiB

ケース詳細
Name Status Time Memory
example_00 AC 96 ms 201.42 MiB
max_random_00 AC 3535 ms 225.80 MiB
max_random_01 AC 3695 ms 225.77 MiB
max_random_02 AC 3642 ms 225.80 MiB
max_random_03 AC 3606 ms 225.80 MiB
max_random_04 AC 3582 ms 225.80 MiB
random_00 AC 2456 ms 217.26 MiB
random_01 AC 2527 ms 219.60 MiB
random_02 AC 1443 ms 209.39 MiB
random_03 AC 861 ms 218.05 MiB
random_04 AC 866 ms 205.42 MiB
small_00 AC 99 ms 201.42 MiB
small_01 AC 97 ms 201.43 MiB
small_02 AC 98 ms 201.41 MiB
small_03 AC 98 ms 201.42 MiB
small_04 AC 101 ms 201.41 MiB

#include <utility> #include <array> #include <cassert> using i64 = long long; struct cluster { i64 sub; i64 sub_cnt; using V = std::pair<i64, i64>; cluster(i64 a, i64 b): sub(a), sub_cnt(b) {} static cluster identity() { return cluster(0, 0); } static cluster compress(const cluster& a, const cluster& b, V av, V bv, V cv) { return cluster(a.sub + b.sub + cv.first, a.sub_cnt + b.sub_cnt + cv.second); } static cluster rake(const cluster& a, const cluster& b, V av, V bv, V cv) { return cluster(a.sub + b.sub + bv.first, a.sub_cnt + b.sub_cnt + bv.second); } static cluster reverse(const cluster& c) { return c; } static std::size_t select(const cluster& a, const cluster& b, V av, V bv, V cv) { return 0; } }; class vertex; class node; int parent_dir(node*); node* link(vertex, vertex, cluster); void test_comp_set(node* n); class vertex_raw { cluster::V val; node* hand; public: vertex_raw(cluster::V val): val(val), hand(nullptr) {} node* handle() const { return this->hand; } void set_handle(node* hand) { this->hand = hand; } const cluster::V& value() const { return this->val; } void set_value(cluster::V val) { this->val = val; } }; class vertex { vertex_raw* ver; private: public: static vertex dangling() { return vertex(); } vertex(): ver(nullptr) {} vertex(cluster::V val): ver( new vertex_raw(val)) { vertex dummy; dummy.ver = new vertex_raw(cluster::V()); link(*this, dummy, cluster::identity()); } bool operator==(const vertex& other) { return this->ver == other.ver; } inline node* handle() const { return this->ver->handle(); } inline void set_handle(node* hand) { this->ver->set_handle(hand); } inline const cluster::V& value() const { return this->ver->value(); } inline void set_value(cluster::V val) { this->ver->set_value(val); } }; enum class Type { Compress, Rake, Edge, None }; static std::size_t ni = 0; extern node ns[2020202]; class node { node* ch[2]; node* par; node* ra; node* me; bool rev; cluster fo; vertex v[2]; Type ty; i64 add; public: node(): par(nullptr), ra(nullptr), me(nullptr), rev(false), fo(cluster::identity()), ty(Type::None), add(0) {} static node* new_edge(vertex v, vertex u, cluster val) { //node* n = new node(); node* n = ns + (ni++); n->v[0] = v; n->v[1] = u; n->fo = val; n->me = n; n->ty = Type::Edge; n->fix(); return n; } static node* new_compress(node* left, node* right) { //node* n = new node(); node* n = ns + (ni++); n->ch[0] = left; n->ch[1] = right; n->me = n; n->ty = Type::Compress; n->fix(); return n; } static node* new_rake(node* left, node* right) { //node * n = new node(); node* n = ns + (ni++); n->ch[0] = left; n->ch[1] = right; n->me = n; n->ty = Type::Rake; n->fix(); return n; } inline void fix() { assert(this->add == 0); if(this->ty == Type::Edge) { if(!this->parent()) { this->endpoint(0).set_handle(this->me); this->endpoint(1).set_handle(this->me); } else if(this->parent()->ty == Type::Compress) { if(parent_dir(this->me) == -1) { this->endpoint(0).set_handle(this->me); } } else if(this->parent()->ty == Type::Rake) { this->endpoint(0).set_handle(this->me); } } else if(this->ty == Type::Compress) { this->v[0] = this->child(0)->endpoint(0); this->v[1] = this->child(1)->endpoint(1); assert(this->child(0)->endpoint(1) == this->child(1)->endpoint(0)); cluster left = this->child(0)->fold(); node* l = this->child(0); if(this->rake()) { node* r = this->rake(); left = cluster::rake(l->fold(), r->fold(), l->endpoint(0).value(), r->endpoint(0).value(), l->endpoint(1).value()); } node* r = this->child(1); this->fo= cluster::compress(left, r->fold(), l->endpoint(0).value(), r->endpoint(1).value(), l->endpoint(1).value()); this->child(0)->endpoint(1).set_handle(this->me); if(!this->parent()) { this->endpoint(0).set_handle(this->me); this->endpoint(1).set_handle(this->me); } else if(this->parent()->ty == Type::Compress) { if(parent_dir(this->me) == -1) { this->endpoint(0).set_handle(this->me); } } else if(this->parent()->ty == Type::Rake) { this->endpoint(0).set_handle(this->me); } } else if(this->ty == Type::Rake) { this->push(); this->v[0] = this->child(0)->endpoint(0); this->v[1] = this->child(0)->endpoint(1); this->fo = cluster::rake(this->child(0)->fold(), this->child(1)->fold(), this->child(0)->endpoint(0).value(), this->child(1)->endpoint(0).value(), this->child(0)->endpoint(1).value()); } else { assert(false); } } inline void push() { if(this->ty == Type::Compress) { if(this->rev) { std::swap(this->ch[0], this->ch[1]); this->child(0)->reverse(); this->child(1)->reverse(); this->rev = false; } this->child(0)->additive(this->add); this->child(1)->additive(this->add); if(this->rake()) this->rake()->additive(this->add); this->add = 0; } else if(this->ty == Type::Rake) { this->child(0)->additive(this->add); this->child(1)->additive(this->add); this->add = 0; } } inline void additive(i64 x) { this->fo.sub += x * fo.sub_cnt; auto func = [&](int i) { this->v[i].set_value({ this->v[i].value().first + this->v[i].value().second * x, this->v[i].value().second }); }; auto func_center = [&]() { auto v = this->child(0)->endpoint(1); auto w = this->child(1)->endpoint(0); if(v == w) v.set_value({ v.value().first + v.value().second * x, v.value().second }); else { v = this->child(0)->endpoint(0); v.set_value({ v.value().first + v.value().second * x, v.value().second }); } }; if(this->ty == Type::Edge) { if(!this->parent()) { func(0); func(1); } else if(this->parent()->ty == Type::Compress) { if(parent_dir(this->me) == -1) { func(0); } } else if(this->parent()->ty == Type::Rake) { func(0); } } else if(this->ty == Type::Compress) { this->add += x; func_center(); if(!this->parent()) { func(0); func(1); } else if(this->parent()->ty == Type::Compress) { if(parent_dir(this->me) == -1) { func(0); } } else if(this->parent()->ty == Type::Rake) { func(0); } } else if(this->ty == Type::Rake) { this->add += x; } else { assert(false); } } inline void reverse() { if(this->ty == Type::Edge) { std::swap(this->v[0], this->v[1]); this->fo = cluster::reverse(this->fold()); } else if(this->ty == Type::Compress) { std::swap(this->v[0], this->v[1]); this->fo = cluster::reverse(this->fold()); this->rev ^= true; } else if(this->ty == Type::Rake) { } else { assert(false); } } inline node* parent() const { return this->par; } inline void set_parent(node* par) { this->par = par; } inline node* rake() const { return this->ra; } inline void set_rake(node* rake) { this->ra = rake; } inline node* child(std::size_t dir) const { return this->ch[dir]; } inline void set_child(node* ch, std::size_t dir) { this->ch[dir] = ch; } inline vertex endpoint(std::size_t dir) { return this->v[dir]; } inline Type type() const { return this->ty; } cluster fold() const { return this->fo; } bool guard; }; int parent_dir(node* child) { node* par = child->parent(); if(par) { if(par->guard) { return -1; } else if(par->child(0) == child) { return 0; } else if(par->child(1) == child) { return 1; } else { return -1; } } else { return -1; } } int parent_dir_guard(node* child) { node* par = child->parent(); if(par) { if(par->child(0) == child) { return 0; } else if(par->child(1) == child) { return 1; } else { return -1; } } else { return -1; } } void rotate(node* t, node* x, std::size_t dir) { node* y = x->parent(); int par = parent_dir_guard(x); t->child(dir)->push(); x->set_child(t->child(dir), dir ^ 1); t->child(dir)->set_parent(x); t->set_child(x, dir); x->set_parent(t); t->set_parent(y); if(par != -1) { y->set_child(t, par); } else if(y && y->type() == Type::Compress) { y->set_rake(t); } x->fix(); t->fix(); if(y && !y->guard) { y->fix(); } } void pusher(node* t) { if(t) { pusher(t->parent()); t->push(); } } void splay(node* t) { assert(t->type() != Type::Edge); t->push(); while(parent_dir(t) != -1) { node* q = t->parent(); if(q->type() != t->type()) break; if(parent_dir(q) != -1 && q->parent() && q->parent()->type() == q->type()) { node* r = q->parent(); if(r->parent()) r->parent()->push(); r->push(); q->push(); t->push(); int qt_dir = parent_dir(t); int rq_dir = parent_dir(q); if(rq_dir == qt_dir) { rotate(q, r, rq_dir ^ 1); rotate(t, q, qt_dir ^ 1); } else { rotate(t, q, qt_dir ^ 1); rotate(t, r, rq_dir ^ 1); } } else { if(q->parent()) q->parent()->push(); q->push(); t->push(); int qt_dir = parent_dir(t); rotate(t, q, qt_dir ^ 1); } } } node* expose_raw(node* t) { pusher(t); while(true) { assert(t->type() != Type::Rake); if(t->type() == Type::Compress) { splay(t); } node* n = nullptr; { node* par = t->parent(); if(!par) { break; } else if(par->type() == Type::Rake) { par->push(); splay(par); n = par->parent(); } else if(par->type() == Type::Compress) { par->push(); if(par->guard && parent_dir_guard(t) != -1) { break; } n = par; } else { assert(false); } } splay(n); int dir = parent_dir_guard(n); if(dir == -1 || n->parent()->type() == Type::Rake) dir = 0; if(dir == 1) { n->child(dir)->reverse(); n->child(dir)->push(); t->reverse(); t->push(); } int n_dir = parent_dir(t); if(n_dir != -1) { node* nch = n->child(dir); nch->push(); node* rake = t->parent(); rake->push(); rake->set_child(nch, n_dir); nch->set_parent(rake); n->set_child(t, dir); t->set_parent(n); nch->fix(); rake->fix(); t->fix(); n->fix(); splay(rake); } else { node* nch = n->child(dir); nch->push(); n->set_rake(nch); nch->set_parent(n); n->set_child(t, dir); t->set_parent(n); nch->fix(); t->fix(); n->fix(); } if(t->type() == Type::Edge) { t = n; } } return t; } node* expose(vertex ver) { return expose_raw(ver.handle()); } void soft_expose(vertex v, vertex u) { pusher(v.handle()); pusher(u.handle()); node* root = expose(v); if(v.handle() == u.handle()) { if(root->endpoint(1) == v || root->endpoint(0) == u) { root->reverse(); root->push(); } return; } root->guard = true; node* soot = expose(u); root->guard = false; root->fix(); if(parent_dir(soot) == 0) { root->reverse(); root->push(); } } node* link(vertex v, vertex u, cluster weight) { if(!v.handle() && !u.handle()) { return node::new_edge(v, u, weight); } else { node* nnu = u.handle(); node* nnv = v.handle(); node* e = node::new_edge(v, u, weight); node* left = nullptr; if(!nnu) { left = e; } else { node* uu = expose_raw(nnu); uu->push(); if(uu->endpoint(1) == u) { uu->reverse(); uu->push(); } if(uu->endpoint(0) == u) { node* nu = node::new_compress(e, uu); e->set_parent(nu); e->fix(); uu->set_parent(nu); uu->fix(); nu->fix(); left = nu; } else { node* nu = uu; node* left_ch = nu->child(0); left_ch->push(); nu->set_child(e, 0); e->set_parent(nu); e->fix(); node* beta = nu->rake(); node* rake = nullptr; if(beta) { beta->push(); rake = node::new_rake(beta, left_ch); beta->set_parent(rake); left_ch->set_parent(rake); beta->fix(); left_ch->fix(); } else { rake = left_ch; } nu->set_rake(rake); rake->set_parent(nu); rake->fix(); nu->fix(); left = nu; } } if(!nnv) {} else { node* vv =expose_raw(nnv); vv->push(); if(vv->endpoint(0) == v) { vv->reverse(); vv->push(); } if(vv->endpoint(1) == v) { node* top = node::new_compress(vv, left); vv->set_parent(top); left->set_parent(top); vv->fix(); left->fix(); top->fix(); } else { node* nv = vv; node* right_ch = nv->child(1); right_ch->reverse(); right_ch->push(); nv->set_child(left, 1); left->set_parent(nv); left->fix(); node* alpha = nv->rake(); node* rake = nullptr; if(alpha) { alpha->push(); rake = node::new_rake(alpha, right_ch); alpha->set_parent(rake); alpha->fix(); right_ch->set_parent(rake); right_ch->fix(); } else { rake = right_ch; } nv->set_rake(rake); rake->set_parent(nv); rake->fix(); nv->fix(); } } return e; } } void bring(node* root) { node* rake = root->rake(); if(!rake) { node* left = root->child(0); //delete root, root = nullptr; left->set_parent(nullptr); left->fix(); } else if(rake->type() == Type::Compress || rake->type() == Type::Edge) { rake->push(); node* new_right = rake; new_right->reverse(); new_right->push(); root->set_child(new_right, 1); new_right->set_parent(root); root->set_rake(nullptr); new_right->fix(); root->fix(); } else if(rake->type() == Type::Rake) { rake->push(); while(rake->child(1)->type() == Type::Rake) { rake->child(1)->push(); rake = rake->child(1); } pusher(rake); root->guard = true; splay(rake); root->guard = false; node* new_rake = rake->child(0); new_rake->push(); node* new_right = rake->child(1); //delete rake, rake = nullptr; new_right->reverse(); new_right->push(); root->set_child(new_right, 1); new_right->set_parent(root); root->set_rake(new_rake); new_rake->set_parent(root); new_rake->fix(); new_right->fix(); root->fix(); } } void cut(vertex v, vertex u) { soft_expose(v, u); node* root = v.handle(); root->push(); node* right = root->child(1); right->set_parent(nullptr); right->reverse(); right->push(); bring(right); bring(root); } cluster path_query(vertex v, vertex u) { soft_expose(v, u); node* root = v.handle(); root->push(); if(root->endpoint(0) == v && root->endpoint(1) == u) { return root->fold(); } else if(root->endpoint(0) == v) { return root->child(0)->fold(); } else if(root->endpoint(1) == u) { return root->child(1)->fold(); } else { root->child(1)->push(); return root->child(1)->child(0)->fold(); } } node ns[2020202]; #include <iostream> #include <vector> #include <tuple> using namespace std; #include <unistd.h> namespace niu { struct fastin { static const int bufsize = 1 << 24; char buf[bufsize]; char* iter; fastin() { iter = buf; for(int t = 0, k; (k = read(STDIN_FILENO, buf + t, sizeof(buf)) - t) > 0; t += k); } fastin& operator>>(i64& num) { num = 0; bool neg = false; while(*iter < '+') iter++; if(*iter == '-') { neg = true; iter++; } else if(*iter == '+') iter++; while(*iter >= '0') num = 10 * num + *(iter++) - '0'; if(neg) num = -num; return *this; } } fin; struct fastout { static const int bufsize = 1 << 24; char buf[bufsize]; char* iter; fastout() { iter = buf; } ~fastout() { for(int t = 0, k; (k = write(STDOUT_FILENO, buf + t, iter - buf - t)) > 0; t += k); } fastout& operator<<(i64 num) { static char tmp[20]; if(num == 0) { *(iter++) = '0'; return *this; } if(num < 0) { *(iter++) = '-'; num = -num; } int i = 0; while(num) { tmp[i++] = num % 10; num /= 10; } while(i--) { *(iter++) = tmp[i] + '0'; } return *this; } fastout& operator<<(char c) { *(iter++) = c; return *this; } } fout; } using niu::fin; using niu::fout; int main() { i64 N, Q; fin >> N >> Q; vector<vertex> vs(N); vector<i64> A(N); for(int i = 0;i < N;i++) { fin >> A[i]; vs[i] = vertex({ A[i], 1 }); } for(int i = 0;i < N - 1;i++) { i64 a, b; fin >> a >> b; link(vs[a], vs[b], cluster::identity()); } for(int i = 0;i < Q;i++) { i64 type; fin >> type; if(type == 0) { i64 a, b, d, e; fin >> a >> b; fin >> d >> e; cut(vs[a], vs[b]); link(vs[d], vs[e], cluster::identity()); } else if(type == 1) { i64 v, p, x; fin >> v >> p >> x; if(v == p) { auto n = expose(vs[v]); n->additive(x); n->push(); } else { auto clu = path_query(vs[p], vs[v]); cut(vs[p], vs[v]); auto n = expose(vs[v]); n->additive(x); n->push(); link(vs[p], vs[v], clu); } } else { i64 v, p; fin >> v >> p; if(v == p) { auto n = expose(vs[v]); fout << n->fold().sub + n->endpoint(0).value().first + n->endpoint(1).value().first << '\n'; } else { auto clu = path_query(vs[p], vs[v]); cut(vs[p], vs[v]); auto n = expose(vs[v]); fout << n->fold().sub + n->endpoint(0).value().first + n->endpoint(1).value().first << '\n'; link(vs[p], vs[v], clu); } } } }