Submit Info #13926

Problem Lang User Status Time Memory
Dynamic Tree Subtree Add Subtree Sum cpp Benq AC 986 ms 21.57 MiB

ケース詳細
Name Status Time Memory
example_00 AC 1 ms 0.71 MiB
max_random_00 AC 982 ms 21.48 MiB
max_random_01 AC 979 ms 21.57 MiB
max_random_02 AC 986 ms 21.55 MiB
max_random_03 AC 945 ms 21.55 MiB
max_random_04 AC 965 ms 21.55 MiB
random_00 AC 666 ms 14.03 MiB
random_01 AC 684 ms 16.42 MiB
random_02 AC 427 ms 6.55 MiB
random_03 AC 253 ms 17.39 MiB
random_04 AC 293 ms 2.67 MiB
small_00 AC 3 ms 0.80 MiB
small_01 AC 4 ms 0.67 MiB
small_02 AC 3 ms 0.68 MiB
small_03 AC 0 ms 0.74 MiB
small_04 AC 4 ms 0.68 MiB

#include <bits/stdc++.h> using namespace std; typedef long long ll; typedef long double ld; typedef double db; typedef string str; typedef pair<int,int> pi; typedef pair<ll,ll> pl; typedef pair<db,db> pd; typedef vector<int> vi; typedef vector<ll> vl; typedef vector<db> vd; typedef vector<str> vs; typedef vector<pi> vpi; typedef vector<pl> vpl; typedef vector<pd> vpd; #define mp make_pair #define f first #define s second #define sz(x) (int)x.size() #define all(x) begin(x), end(x) #define rall(x) (x).rbegin(), (x).rend() #define rsz resize #define ins insert #define ft front() #define bk back() #define pf push_front #define pb push_back #define eb emplace_back #define lb lower_bound #define ub upper_bound #define FOR(i,a,b) for (int i = (a); i < (b); ++i) #define F0R(i,a) FOR(i,0,a) #define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i) #define R0F(i,a) ROF(i,0,a) #define trav(a,x) for (auto& a: x) const int MOD = 998244353; const int MX = 2e5+5; const ll INF = 1e18; const ld PI = acos((ld)-1); const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); template<class T> bool ckmin(T& a, const T& b) { return b < a ? a = b, 1 : 0; } template<class T> bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; } constexpr int pct(int x) { return __builtin_popcount(x); } constexpr int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) constexpr int cdiv(int a, int b) { return a/b+!(a<0||a%b == 0); } // division of a by b rounded up, assumes b > 0 int fstTrue(function<bool(int)> f, int lo, int hi) { hi ++; assert(lo <= hi); // assuming f is increasing while (lo < hi) { // find first index such that f is true int mid = (lo+hi)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; } template<class T> void remDup(vector<T>& v) { sort(all(v)); v.erase(unique(all(v)),end(v)); } // INPUT template<class A> void re(complex<A>& c); template<class A, class B> void re(pair<A,B>& p); template<class A> void re(vector<A>& v); template<class A, size_t SZ> void re(array<A,SZ>& a); template<class T> void re(T& x) { cin >> x; } void re(db& d) { str t; re(t); d = stod(t); } void re(ld& d) { str t; re(t); d = stold(t); } template<class H, class... T> void re(H& h, T&... t) { re(h); re(t...); } template<class A> void re(complex<A>& c) { A a,b; re(a,b); c = {a,b}; } template<class A, class B> void re(pair<A,B>& p) { re(p.f,p.s); } template<class A> void re(vector<A>& x) { trav(a,x) re(a); } template<class A, size_t SZ> void re(array<A,SZ>& x) { trav(a,x) re(a); } // TO_STRING #define ts to_string str ts(char c) { return str(1,c); } str ts(bool b) { return b ? "true" : "false"; } str ts(const char* s) { return (str)s; } str ts(str s) { return s; } template<class A> str ts(complex<A> c) { stringstream ss; ss << c; return ss.str(); } str ts(vector<bool> v) { str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]); res += "}"; return res; } template<size_t SZ> str ts(bitset<SZ> b) { str res = ""; F0R(i,SZ) res += char('0'+b[i]); return res; } template<class A, class B> str ts(pair<A,B> p); template<class T> str ts(T v) { // containers with begin(), end() bool fst = 1; str res = "{"; for (const auto& x: v) { if (!fst) res += ", "; fst = 0; res += ts(x); } res += "}"; return res; } template<class A, class B> str ts(pair<A,B> p) { return "("+ts(p.f)+", "+ts(p.s)+")"; } // OUTPUT template<class A> void pr(A x) { cout << ts(x); } template<class H, class... T> void pr(const H& h, const T&... t) { pr(h); pr(t...); } void ps() { pr("\n"); } // print w/ spaces template<class H, class... T> void ps(const H& h, const T&... t) { pr(h); if (sizeof...(t)) pr(" "); ps(t...); } // DEBUG void DBG() { cerr << "]" << endl; } template<class H, class... T> void DBG(H h, T... t) { cerr << ts(h); if (sizeof...(t)) cerr << ", "; DBG(t...); } #ifdef LOCAL // compile with -DLOCAL #define dbg(...) cerr << "LINE(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__) #else #define dbg(...) 0 #endif // FILE I/O void setIn(string s) { freopen(s.c_str(),"r",stdin); } void setOut(string s) { freopen(s.c_str(),"w",stdout); } void unsyncIO() { ios_base::sync_with_stdio(0); cin.tie(0); } void setIO(string s = "") { unsyncIO(); // cin.exceptions(cin.failbit); // throws exception when do smth illegal // ex. try to read letter into int if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO } /** * Description: modular arithmetic operations * Source: * KACTL * https://codeforces.com/blog/entry/63903 * https://codeforces.com/contest/1261/submission/65632855 (tourist) * https://codeforces.com/contest/1264/submission/66344993 (ksun) * also see https://github.com/ecnerwala/cp-book/blob/master/src/modnum.hpp (ecnerwal) * Verification: * https://open.kattis.com/problems/modulararithmetic */ struct mi { typedef decay<decltype(MOD)>::type T; /// don't silently convert to T T v; explicit operator T() const { return v; } mi() { v = 0; } mi(ll _v) { v = (-MOD < _v && _v < MOD) ? _v : _v % MOD; if (v < 0) v += MOD; } friend bool operator==(const mi& a, const mi& b) { return a.v == b.v; } friend bool operator!=(const mi& a, const mi& b) { return !(a == b); } friend bool operator<(const mi& a, const mi& b) { return a.v < b.v; } friend void re(mi& a) { ll x; re(x); a = mi(x); } friend str ts(mi a) { return ts(a.v); } mi& operator+=(const mi& m) { if ((v += m.v) >= MOD) v -= MOD; return *this; } mi& operator-=(const mi& m) { if ((v -= m.v) < 0) v += MOD; return *this; } mi& operator*=(const mi& m) { v = (ll)v*m.v%MOD; return *this; } mi& operator/=(const mi& m) { return (*this) *= inv(m); } friend mi pow(mi a, ll p) { mi ans = 1; assert(p >= 0); for (; p; p /= 2, a *= a) if (p&1) ans *= a; return ans; } friend mi inv(const mi& a) { assert(a.v != 0); return pow(a,MOD-2); } mi operator-() const { return mi(-v); } mi& operator++() { return *this += 1; } mi& operator--() { return *this -= 1; } friend mi operator+(mi a, const mi& b) { return a += b; } friend mi operator-(mi a, const mi& b) { return a -= b; } friend mi operator*(mi a, const mi& b) { return a *= b; } friend mi operator/(mi a, const mi& b) { return a /= b; } }; typedef vector<mi> vmi; typedef pair<mi,mi> pmi; typedef vector<pmi> vpmi; vector<vmi> scmb; // small combinations void genComb(int SZ) { scmb.assign(SZ,vmi(SZ)); scmb[0][0] = 1; FOR(i,1,SZ) F0R(j,i+1) scmb[i][j] = scmb[i-1][j]+(j?scmb[i-1][j-1]:0); } /** * Description: Link-Cut Tree. Given a function $f(1\ldots N)\to 1\ldots N,$ * evaluates $f^b(a)$ for any $a,b.$ \texttt{sz} is for path queries; * \texttt{sub}, \texttt{vsub} are for subtree queries. \texttt{x->access()} * brings \texttt{x} to the top and propagates it; its left subtree will be * the path from \texttt{x} to the root and its right subtree will be empty. * Then \texttt{sub} will be the number of nodes in the connected component * of \texttt{x} and \texttt{vsub} will be the number of nodes under \texttt{x}. * Use \texttt{makeRoot} for arbitrary path queries. * Time: O(\log N) * Usage: FOR(i,1,N+1)LCT[i]=new snode(i); link(LCT[1],LCT[2],1); * Source: Dhruv Rohatgi, Eric Zhang * https://sites.google.com/site/kc97ble/container/splay-tree/splaytree-cpp-3 * https://codeforces.com/blog/entry/67637 * Verification: (see README for links) * ekzhang Balanced Tokens * Dynamic Tree Test (Easy) * https://probgate.org/viewproblem.php?pid=578 (The Applicant) */ typedef pmi T; T operator+(T a, T b) { return {a.f*b.f,a.s*b.f+b.s}; } mi appl(T a, mi b) { return a.f*b+a.s; } typedef struct snode* sn; struct snode { //////// VARIABLES sn p, c[2]; // parent, children sn extra; // extra cycle node for "The Applicant" bool flip = 0; // subtree flipped or not int sz, sub, vsub; ll val; ll vsubSum = 0, subSum = 0; ll addPath = 0, addVir = 0; snode(ll _val) : val(_val) { p = c[0] = c[1] = extra = NULL; calc(); } friend int getSz(sn x) { return x?x->sz:0; } friend ll getSub(sn x) { return x?x->sub:0; } friend ll getSubSum(sn x) { return x?x->subSum:0; } void inc(ll x) { prop(); ll old = subSum; addPath += x; addVir += x; vsubSum += x*vsub; subSum += x*vsub; prop(); assert(subSum-old == x*sub); } void prop() { // lazy prop subSum += addPath*(sub-vsub); // addVir is already included in subSum F0R(i,2) if (c[i]) { c[i]->addPath += addPath; c[i]->addVir += addPath; c[i]->vsubSum += c[i]->vsub*addPath; c[i]->subSum += c[i]->vsub*addPath; } val += addPath; addPath = 0; if (!flip) return; swap(c[0],c[1]); flip = 0; F0R(i,2) if (c[i]) c[i]->flip ^= 1; } void calc() { // recalc vals F0R(i,2) if (c[i]) c[i]->prop(); sz = 1+getSz(c[0])+getSz(c[1]); sub = 1+getSub(c[0])+getSub(c[1])+vsub; subSum = val+getSubSum(c[0])+getSubSum(c[1])+vsubSum; // assume vsub, vsubSum are OK } //////// SPLAY TREE OPERATIONS int dir() { if (!p) return -2; F0R(i,2) if (p->c[i] == this) return i; return -1; // p is path-parent pointer } // -> not in current splay tree // test if root of current splay tree bool isRoot() { return dir() < 0; } friend void setLink(sn x, sn y, int d) { if (y) y->p = x; if (d >= 0) x->c[d] = y; } void rot() { // assume p and p->p propagated assert(!isRoot()); int x = dir(); sn pa = p; setLink(pa->p, this, pa->dir()); setLink(pa, c[x^1], x); setLink(this, pa, x^1); pa->calc(); calc(); } void splay() { while (!isRoot() && !p->isRoot()) { p->p->prop(), p->prop(), prop(); dir() == p->dir() ? p->rot() : rot(); rot(); } if (!isRoot()) p->prop(), prop(), rot(); prop(); } sn fbo(int b) { // find by order prop(); int z = getSz(c[0]); // of splay tree if (b == z) { splay(); return this; } return b < z ? c[0]->fbo(b) : c[1] -> fbo(b-z-1); } //////// BASE OPERATIONS void access() { // bring this to top of tree, propagate for (sn v = this, pre = NULL; v; v = v->p) { v->splay(); // now switch virtual children if (pre) { pre->inc(v->addVir); pre->prop(); v->vsub -= pre->sub; v->vsubSum -= pre->subSum; } if (v->c[1]) { v->c[1]->prop(); v->vsub += v->c[1]->sub; v->vsubSum += v->c[1]->subSum; v->c[1]->inc(-v->addVir); } v->c[1] = pre; v->calc(); pre = v; } splay(); assert(!c[1]); // right subtree is empty } void makeRoot() { access(); flip ^= 1; access(); assert(!c[0] && !c[1]); } //////// QUERIES friend sn lca(sn x, sn y) { if (x == y) return x; x->access(), y->access(); if (!x->p) return NULL; x->splay(); return x->p?:x; // y was below x in latter case } // access at y did not affect x -> not connected friend bool connected(sn x, sn y) { return lca(x,y); } // # nodes above int distRoot() { access(); return getSz(c[0]); } sn getRoot() { // get root of LCT component access(); sn a = this; while (a->c[0]) a = a->c[0], a->prop(); a->access(); return a; } sn getPar(int b) { // get b-th parent on path to root access(); b = getSz(c[0])-b; assert(b >= 0); return fbo(b); } // can also get min, max on path to root, etc //////// MODIFICATIONS //void set(int v) { access(); val = v; calc(); } friend void link(sn x, sn y, bool force = 0) { assert(!connected(x,y)); if (force) y->makeRoot(); // make x par of y else { y->access(); assert(!y->c[0]); } x->access(); setLink(y,x,0); y->calc(); } friend void cut(sn y) { // cut y from its parent y->access(); assert(y->c[0]); y->c[0]->p = NULL; y->c[0] = NULL; y->calc(); } friend void cut(sn x, sn y) { // if x, y adj in tree x->makeRoot(); y->access(); assert(y->c[0] == x && !x->c[0] && !x->c[1]); cut(y); } }; sn LCT[MX]; //////// THE APPLICANT SOLUTION void setNex(sn a, sn b) { // set f[a] = b if (connected(a,b)) a->extra = b; else link(b,a); } void delNex(sn a) { // set f[a] = NULL auto t = a->getRoot(); if (t == a) { t->extra = NULL; return; } cut(a); assert(t->extra); if (!connected(t,t->extra)) link(t->extra,t), t->extra = NULL; } sn getPar(sn a, int b) { // get f^b[a] int d = a->distRoot(); if (b <= d) return a->getPar(b); b -= d+1; auto r = a->getRoot()->extra; assert(r); d = r->distRoot()+1; return r->getPar(b%d); } int N,Q; int main() { setIO(); re(N,Q); F0R(i,N) { int a; re(a); LCT[i] = new snode(a); } F0R(i,N-1) { int u,v; re(u,v); link(LCT[u],LCT[v],1); } F0R(i,Q) { int t; re(t); dbg("HUH",t); if (t == 0) { int u,v,w,x; re(u,v,w,x); cut(LCT[u],LCT[v]); link(LCT[w],LCT[x],1); } else if (t == 1) { int v,p,x; re(v,p,x); LCT[p]->makeRoot(); cut(LCT[v]); LCT[v]->inc(x); link(LCT[p],LCT[v],1); } else { int v,p; re(v,p); LCT[p]->makeRoot(); dbg("MADEROOT"); LCT[v]->access(); dbg("ACCESS"); ps(LCT[v]->vsubSum+LCT[v]->val); } } // you should actually read the stuff at the bottom } /* stuff you should look for * int overflow, array bounds * special cases (n=1?) * do smth instead of nothing and stay organized * WRITE STUFF DOWN */