Submit Info #25610

Problem Lang User Status Time Memory
Convex Layers cpp Benq AC 629 ms 67.29 MiB

ケース詳細
Name Status Time Memory
example_00 AC 0 ms 0.62 MiB
example_01 AC 1 ms 0.67 MiB
example_02 AC 0 ms 0.62 MiB
example_03 AC 2 ms 0.67 MiB
example_04 AC 1 ms 0.62 MiB
example_05 AC 2 ms 0.69 MiB
line_00 AC 196 ms 43.83 MiB
line_01 AC 236 ms 52.12 MiB
line_02 AC 78 ms 18.79 MiB
line_03 AC 261 ms 57.64 MiB
line_04 AC 20 ms 5.71 MiB
max_l_00 AC 294 ms 67.29 MiB
max_random_00 AC 616 ms 64.41 MiB
max_random_01 AC 628 ms 64.33 MiB
max_random_02 AC 624 ms 64.38 MiB
max_random_03 AC 621 ms 64.41 MiB
max_random_04 AC 629 ms 64.41 MiB
max_square_grid_00 AC 360 ms 64.12 MiB
max_t_00 AC 305 ms 64.73 MiB
max_x_00 AC 273 ms 64.72 MiB
max_y_00 AC 285 ms 64.66 MiB

#include <bits/stdc++.h> using namespace std; using ll = long long; using ld = long double; using db = double; using str = string; // yay python! using pi = pair<int,int>; using pl = pair<ll,ll>; using pd = pair<db,db>; using vi = vector<int>; using vb = vector<bool>; using vl = vector<ll>; using vd = vector<db>; using vs = vector<str>; using vpi = vector<pi>; using vpl = vector<pl>; using vpd = vector<pd>; #define tcT template<class T // ^ lol this makes everything look weird but I'll try it tcT> using V = vector<T>; tcT, size_t SZ> using AR = array<T,SZ>; // pairs #define mp make_pair #define f first #define s second // vectors #define sz(x) (int)(x).size() #define all(x) begin(x), end(x) #define rall(x) (x).rbegin(), (x).rend() #define sor(x) sort(all(x)) #define rsz resize #define ins insert #define ft front() #define bk back() #define pf push_front #define pb push_back #define eb emplace_back #define lb lower_bound #define ub upper_bound // loops #define FOR(i,a,b) for (int i = (a); i < (b); ++i) #define F0R(i,a) FOR(i,0,a) #define ROF(i,a,b) for (int i = (b)-1; i >= (a); --i) #define R0F(i,a) ROF(i,0,a) #define trav(a,x) for (auto& a: x) const int MOD = 1e9+7; // 998244353; const int MX = 2e5+5; const ll INF = 1e18; // not too close to LLONG_MAX const ld PI = acos((ld)-1); const int xd[4] = {1,0,-1,0}, yd[4] = {0,1,0,-1}; // for every grid problem!! mt19937 rng((uint32_t)chrono::steady_clock::now().time_since_epoch().count()); // helper funcs constexpr int pct(int x) { return __builtin_popcount(x); } // # of bits set constexpr int bits(int x) { return 31-__builtin_clz(x); } // floor(log2(x)) ll cdiv(ll a, ll b) { return a/b+((a^b)>0&&a%b); } // divide a by b rounded up ll fdiv(ll a, ll b) { return a/b-((a^b)<0&&a%b); } // divide a by b rounded down tcT> bool ckmin(T& a, const T& b) { return b < a ? a = b, 1 : 0; } // set a = min(a,b) tcT> bool ckmax(T& a, const T& b) { return a < b ? a = b, 1 : 0; } #define tcTU tcT, class U tcTU> T fstTrue(T lo, T hi, U f) { hi ++; assert(lo <= hi); // assuming f is increasing while (lo < hi) { // find first index such that f is true T mid = lo+(hi-lo)/2; f(mid) ? hi = mid : lo = mid+1; } return lo; } tcTU> T lstTrue(T lo, T hi, U f) { lo --; assert(lo <= hi); // assuming f is decreasing while (lo < hi) { // find first index such that f is true T mid = lo+(hi-lo+1)/2; f(mid) ? lo = mid : hi = mid-1; } return lo; } tcT> void remDup(vector<T>& v) { // sort and remove duplicates sort(all(v)); v.erase(unique(all(v)),end(v)); } tcTU> void erase(T& t, const U& u) { // don't erase auto it = t.find(u); assert(it != end(t)); t.erase(u); } // element that doesn't exist from (multi)set // INPUT #define tcTUU tcT, class ...U tcT> void re(complex<T>& c); tcTU> void re(pair<T,U>& p); tcT> void re(vector<T>& v); tcT, size_t SZ> void re(AR<T,SZ>& a); tcT> void re(T& x) { cin >> x; } void re(db& d) { str t; re(t); d = stod(t); } void re(ld& d) { str t; re(t); d = stold(t); } tcTUU> void re(T& t, U&... u) { re(t); re(u...); } tcT> void re(complex<T>& c) { T a,b; re(a,b); c = {a,b}; } tcTU> void re(pair<T,U>& p) { re(p.f,p.s); } tcT> void re(vector<T>& x) { trav(a,x) re(a); } tcT, size_t SZ> void re(AR<T,SZ>& x) { trav(a,x) re(a); } // TO_STRING #define ts to_string str ts(char c) { return str(1,c); } str ts(const char* s) { return (str)s; } str ts(str s) { return s; } str ts(bool b) { #ifdef LOCAL return b ? "true" : "false"; #else return ts((int)b); #endif } tcT> str ts(complex<T> c) { stringstream ss; ss << c; return ss.str(); } str ts(vector<bool> v) { str res = "{"; F0R(i,sz(v)) res += char('0'+v[i]); res += "}"; return res; } template<size_t SZ> str ts(bitset<SZ> b) { str res = ""; F0R(i,SZ) res += char('0'+b[i]); return res; } tcTU> str ts(pair<T,U> p); tcT> str ts(T v) { // containers with begin(), end() #ifdef LOCAL bool fst = 1; str res = "{"; for (const auto& x: v) { if (!fst) res += ", "; fst = 0; res += ts(x); } res += "}"; return res; #else bool fst = 1; str res = ""; for (const auto& x: v) { if (!fst) res += " "; fst = 0; res += ts(x); } return res; #endif } tcTU> str ts(pair<T,U> p) { #ifdef LOCAL return "("+ts(p.f)+", "+ts(p.s)+")"; #else return ts(p.f)+" "+ts(p.s); #endif } // OUTPUT tcT> void pr(T x) { cout << ts(x); } tcTUU> void pr(const T& t, const U&... u) { pr(t); pr(u...); } void ps() { pr("\n"); } // print w/ spaces tcTUU> void ps(const T& t, const U&... u) { pr(t); if (sizeof...(u)) pr(" "); ps(u...); } // DEBUG void DBG() { cerr << "]" << endl; } tcTUU> void DBG(const T& t, const U&... u) { cerr << ts(t); if (sizeof...(u)) cerr << ", "; DBG(u...); } #ifdef LOCAL // compile with -DLOCAL, chk -> fake assert #define dbg(...) cerr << "Line(" << __LINE__ << ") -> [" << #__VA_ARGS__ << "]: [", DBG(__VA_ARGS__) #define chk(...) if (!(__VA_ARGS__)) cerr << "Line(" << __LINE__ << ") -> function(" \ << __FUNCTION__ << ") -> CHK FAILED: (" << #__VA_ARGS__ << ")" << "\n", exit(0); #else #define dbg(...) 0 #define chk(...) 0 #endif // FILE I/O void setIn(str s) { freopen(s.c_str(),"r",stdin); } void setOut(str s) { freopen(s.c_str(),"w",stdout); } void unsyncIO() { cin.tie(0)->sync_with_stdio(0); } void setIO(str s = "") { unsyncIO(); // cin.exceptions(cin.failbit); // throws exception when do smth illegal // ex. try to read letter into int if (sz(s)) { setIn(s+".in"), setOut(s+".out"); } // for USACO } /** * Description: Use in place of \texttt{complex<T>}. * Source: http://codeforces.com/blog/entry/22175, KACTL * Verification: various */ using T = ll; int sgn(T a) { return (a>0)-(a<0); } T sq(T a) { return a*a; } typedef pair<T,T> P; typedef vector<P> vP; T norm(const P& p) { return sq(p.f)+sq(p.s); } T abs(const P& p) { return sqrt(norm(p)); } T arg(const P& p) { return atan2(p.s,p.f); } P conj(const P& p) { return P(p.f,-p.s); } P perp(const P& p) { return P(-p.s,p.f); } P dir(T ang) { return P(cos(ang),sin(ang)); } P operator-(const P& l) { return P(-l.f,-l.s); } P operator+(const P& l, const P& r) { return P(l.f+r.f,l.s+r.s); } P operator-(const P& l, const P& r) { return P(l.f-r.f,l.s-r.s); } P operator*(const P& l, const T& r) { return P(l.f*r,l.s*r); } P operator*(const T& l, const P& r) { return r*l; } P operator/(const P& l, const T& r) { return P(l.f/r,l.s/r); } P operator*(const P& l, const P& r) { return P(l.f*r.f-l.s*r.s,l.s*r.f+l.f*r.s); } P operator/(const P& l, const P& r) { return l*conj(r)/norm(r); } P& operator+=(P& l, const P& r) { return l = l+r; } P& operator-=(P& l, const P& r) { return l = l-r; } P& operator*=(P& l, const T& r) { return l = l*r; } P& operator/=(P& l, const T& r) { return l = l/r; } P& operator*=(P& l, const P& r) { return l = l*r; } P& operator/=(P& l, const P& r) { return l = l/r; } P unit(const P& p) { return p/abs(p); } T dot(const P& a, const P& b) { return a.f*b.f+a.s*b.s; } T cross(const P& a, const P& b) { return a.f*b.s-a.s*b.f; } T cross(const P& p, const P& a, const P& b) { return cross(a-p,b-p); } P reflect(const P& p, const P& a, const P& b) { return a+conj((p-a)/(b-a))*(b-a); } P foot(const P& p, const P& a, const P& b) { return (p+reflect(p,a,b))/(T)2; } bool onSeg(const P& p, const P& a, const P& b) { return cross(a,b,p) == 0 && dot(p-a,p-b) <= 0; } struct DecUpperHull { struct Link; using pL = Link*; struct Link { P p; int id; pL prev = 0, next = 0; }; struct Node { pL chain, chain_back, tangent; }; pair<pL, pL> find_bridge(pL l, pL r, function<pL(pL)> next, function<bool(P,P,P)> convex) { while (next(l) || next(r)) { if (!next(r) || (next(l) && convex(P(),next(l)->p-l->p,next(r)->p-r->p))) { if (!convex(l->p,next(l)->p,r->p)) break; l = next(l); } else { if (convex(l->p,r->p,next(r)->p)) break; r = next(r); } } return {l,r}; } template<bool rev = 0> void fix_chain(int u, pL l, pL r) { if (rev) { // l and r to right of actual bridge tie(r,l) = find_bridge(r,l, [](pL x) { return x->prev; }, [](P a, P b, P c) { return cross(a,b,c) >= 0; }); } else { // l and r to left of actual bridge tie(l,r) = find_bridge(l,r, [](pL x) { return x->next; }, [](P a, P b, P c) { return cross(a,b,c) <= 0; }); } tree[u].tangent = l; tree[u].chain = tree[2*u].chain, tree[u].chain_back = tree[2*u+1].chain_back; { // remove portion of 2*u's chain contained within u tree[2*u].chain = l->next; if (l->next) l->next->prev = 0; else tree[2*u].chain_back = 0; } { // remove portion of 2*u+1's chain contained within u tree[2*u+1].chain_back = r->prev; if (r->prev) r->prev->next = 0; else tree[2*u+1].chain = 0; } l->next = r, r->prev = l; } void rob(int u, int v) { // transfer info from v to u tree[u].chain = tree[v].chain; tree[v].chain = 0; tree[u].chain_back = tree[v].chain_back; tree[v].chain_back = 0; } void rem(int u, int L, int R, int i) { if (i < L || i > R) return; assert(L < R); int M = (L+R)/2; // should never hit leaf int v = i <= M ? 2*u : 2*u+1; if (!tree[u].tangent) { // only one child, that child contains i rob(v,u); i <= M ? rem(v,L,M,i) : rem(v,M+1,R,i); rob(u,v); return; } pL l = tree[u].tangent, r = l->next; { // fix hull of 2*u l->next = tree[2*u].chain; if (tree[2*u].chain) tree[2*u].chain->prev = l; else tree[2*u].chain_back = l; tree[2*u].chain = tree[u].chain; } { // fix hull of 2*u+1 r->prev = tree[2*u+1].chain_back; if (tree[2*u+1].chain_back) tree[2*u+1].chain_back->next = r; else tree[2*u+1].chain = r; tree[2*u+1].chain_back = tree[u].chain_back; } if (tree[v].chain == tree[v].chain_back && tree[v].chain->id == i) { tree[v].chain = tree[v].chain_back = 0; rob(u,v^1); tree[u].tangent = 0; return; } if (i <= M) { if (l->id == i) l = l->next; rem(v,L,M,i); fix_chain<1>(u,l?:tree[v].chain_back,r); } else { if (r->id == i) r = r->prev; rem(v,M+1,R,i); fix_chain<0>(u,l,r?:tree[v].chain); } } vb removed; void rem(int i) { assert(!removed[i]); removed[i] = 1; if (tree[1].chain == tree[1].chain_back) { tree[1].chain = tree[1].chain_back = 0; return; } rem(1,0,N-1,i); } void build(int u, int L, int R) { if (L == R) { tree[u].tangent = 0; tree[u].chain = tree[u].chain_back = &lists[L]; return; } int M = (L+R)/2; build(2*u,L,M); build(2*u+1,M+1,R); fix_chain(u,tree[2*u].chain,tree[2*u+1].chain); } void init(vP points) { assert(is_sorted(all(points))); N = sz(points); tree.rsz(4*N); lists.rsz(N); removed = vb(N); F0R(i,N) lists[i].p = points[i], lists[i].id = i; build(1,0,N-1); } vi get_hull() { vi ret; for (pL u = tree[1].chain; u; u = u->next) ret.pb(u->id); return ret; } int N; V<Node> tree; V<Link> lists; }; DecUpperHull up, down; int N; vP points; int main() { // copy dacin21 LOL setIO(); re(N); points.rsz(N); re(points); vi inds(N); iota(all(inds),0); sort(all(inds),[&](int x, int y) { return points[x] < points[y]; }); { vP tmp; F0R(i,N) tmp.pb(points[inds[i]]); // dbg(tmp); up.init(tmp); } { vP tmp; R0F(i,N) tmp.pb(points[inds[i]]*-1); // dbg(tmp); down.init(tmp); } dbg("OK"); vi ans(N); int done = 0; for (int layer = 1; done < N; ++layer) { set<int> hull; trav(i,up.get_hull()) hull.insert(i); trav(i,down.get_hull()) hull.insert(N-1-i); dbg("HA",layer,hull); trav(i,hull) { ans[inds[i]] = layer; done ++; up.rem(i); down.rem(N-1-i); } } trav(t,ans) ps(t); // you should actually read the stuff at the bottom } /* stuff you should look for * int overflow, array bounds * special cases (n=1?) * do smth instead of nothing and stay organized * WRITE STUFF DOWN * DON'T GET STUCK ON ONE APPROACH */